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Abstract
We calculate the tunnelling conductance spectra of a ferromagnetic metal/
insulator/triplet-superconductor junction from the reflection amplitudes using
the Blonder–Tinkham–Klapwijk formula. For the triplet superconductor, we
assume one special p-wave order parameter, having line nodes, and two two-
dimensional f-wave order parameters with line nodes, breaking the time-
reversal symmetry. Also we examine nodeless pairing potentials. The evolution
of the spectra with the exchange potential depends solely on the topology
of the gap. The weak Andreev reflection within the ferromagnet results in
the suppression of the tunnelling conductance and eliminates the resonances
due to the anisotropy of the pairing potential. The tunnelling spectrum splits
asymmetrically with respect to E = 0 under the influence of an external
magnetic field. The results can be used to distinguish between the possible
candidate pairing states of the superconductor Sr2RuO4.

1. Introduction

The recent discovery of superconductivity in Sr2RuO4 has attracted much theoretical and
experimental interest [1]. The time-reversal symmetry is broken for the superconductor
Sr2RuO4, and the magnetic field is spontaneously induced as shown by µSR experiment [2].
The Knight shift shows no change when passing through the superconducting state and this
is a clear indication of a spin-triplet pairing state, with a d-vector aligned with the z-axis [3].
In addition, the band-structure calculations [4] and de Haas–van Alphen measurements [5]
show little dispersion along kz, which is consistent with a two-dimensional basis function
on a cylindrical Fermi surface. Furthermore, the presence of a large residual density of
states of quasiparticles inside the superconducting gap is evident from the linear temperature
dependence of the nuclear spin–lattice relaxation rate 1/T1 of 101Ru below 0.4 K [6]. Also,
specific heat measurements support the scenario of line nodes within the gap, as in the high-Tc
cuprate superconductors [7].

In the experiments on tunnelling between normal metals and superconductors, Andreev
reflection processes take place [8,9]. In the Andreev reflection process an electron incident on
the barrier with an energy below the gap cannot drain off into the superconductor. It is instead
reflected as a hole and a Cooper pair is transferred into the superconductor. In anisotropic
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high-Tc superconductors, due to the sign change of the pair potential that the transmitted
quasiparticles experience, zero-energy states are formed, which are detected as peaks in the
conductance spectra at E = 0 [10]. Also, in the presence of an imaginary s-wave component,
which breaks the time-reversal symmetry, the zero-energy peak is shifted to the amplitude of
the subdominant component [11, 12].

The properties of the Andreev reflection are modified in the presence of an exchange
field such as in ferromagnet/insulator/superconductor junctions, since the back-reflection of
the Andreev reflection is suppressed in the ferromagnet. This phenomenon has been clarified
both in s-wave and in d-wave junctions and interesting aspects of the Andreev reflection have
been revealed [13–16]. Also the properties of ferromagnet/insulator/triplet-superconductor
junctions have been studied where two types of pairing potential are assumed for the triplet
superconductor, i.e. the unitary and the non-unitary types with Eu symmetry [17]. In the
unitary case the conductance within the gap is reduced by the exchange interaction while in
the non-unitary case it is not much influenced since the latter pairing state conserves spin.

In order to identify the pairing state of Sr2RuO4 the Bogoliubov–de Gennes (BdG)
equations have been used to calculate the quasiparticle bound-state wave function around
non-magnetic impurities in unconventional superconductors [18]. The characteristic patterns
were distinguished for two proposed symmetries of the order parameters, namely: (i) Eu; and
(ii) B1g × Eu.

In this paper we will use the BdG equations to calculate the tunnelling conductance
of ferromagnet/triplet-superconductor contacts, with a barrier of arbitrary strength between
them, in terms of the probability amplitudes of Andreev and normal reflection. For the
triplet superconductor we shall assume three possible pairing states of two-dimensional order
parameters, having line nodes within the RuO2 plane, which break the time-reversal symmetry.
The first two are the 2D f-wave states proposed by Hasegawa et al [19] having B1g × Eu and
B2g × Eu symmetry. The other one is called the nodal p-wave state and has been proposed by
Dahm et al [20]; here the pairing potential has the form d(k) = 
0ẑ(sin(kxa) + i sin(kya)),
with kxa = π cos θ , kya = π sin θ . This pairing symmetry has nodes as in the B2g × Eu

case. Also we will consider two nodeless pairing states. One is the isotropic p-wave state and
the other is the nodeless p-wave state initially proposed by Miyake and Narikiyo [21], both
breaking the time-reversal symmetry. Generally the tunnelling conductance is suppressed
with the increase of the exchange interaction and the peaks are removed. This is due to
the suppression of the Andreev reflection in the ferromagnet. For the nodal pairing states
the linear dependence of the tunnelling conductance on E is not much influenced. For the
nodeless cases, the normalized conductance develops a constant value within the gap, which
becomes suppressed as the exchange field gets larger. When the ferromagnet is a normal
metal, the magnetic field splits the tunnelling spectrum symmetrically around E = 0. The
exchange field eliminates the negative branch of the tunnelling spectra in the half-metallic
ferromagnetic limit.

2. Theory of the tunnelling effect

For spin-triplet superconductors the wave functions describing the quasiparticles �̂(r) are
four-spinors in Nambu (particle–hole ⊗ spin) space. Their particle and hole components are
determined by the solutions of the BdG equations [23, 24]:

E�̂(r) =
∫

dr′ Ĥ (r, r′)�̂(r′) (1)
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where

�̂(r) =



u↑(r)
u↓(r)
v↑(r)
v↓(r)


 (2)

Ĥ (r, r′) =
(
Ĥe 
̂


̂∗ −Ĥe

)
. (3)


̂ is the 2 × 2 triplet pairing matrix with elements of the form 
ss̄(r, r
′), and the spin index

s = ↑ or s = ↓. Ĥe = He(r
′)δ(r − r′)σ̂0, where σ̂0 is the 2 × 2 unit matrix, and He(r) is

the single-particle Hamiltonian which is given by He(r) = −h̄2∇2
r/2me + V (r) − EF ; E is

the energy measured from the Fermi energy EF . For the pairing states that we examine in
section 3, the spin-up and spin-down components decouple. We will consider only triplet
pairing states where 
↑↑(r, r′) = 
↓↓(r, r′) = 0, while 
↑↓(r, r′) = 
↓↑(r, r′). In
that case the Cooper pairs have zero spin projection. The spin-dependent BdG equations
are decoupled into two independent sets of (two-component) equations, one for the spin-up-
electron, spin-down-hole quasiparticle (u↑(r), v↓(r)), and the other for (u↓(r), v↑(r)). The
corresponding BdG equations for spin index s (s̄) = ↑ (↓) or s (s̄) = ↓ (↑) read [25]

Eus(r) = (He(r)− ρU(r))us(r) +
∫

dr′ 
ss̄(s,x)vs̄(r′)

Evs̄(r) = −(H∗
e (r) + ρU(r))vs̄(r) +

∫
dr′ 
∗

s̄s (s,x)us(r
′)

(4)

whereU(r) is the exchange potential, ρ is 1 (−1) for up (down) spins. 
ss̄(s,x) is the matrix
element of the pair potential, after a transformation from the position coordinates r, r′ to the
centre-of-mass coordinate x = (r + r′)/2, and the relative vector s = r − r′. After Fourier
transformation the pair potential depends on the related wave vector k and x. In the weak-
coupling limit, k is fixed to being on the Fermi surface (|k| = kF ), and only its direction θ is
variable. After applying the quasi-classical approximation, i.e.(

ūs(r)

v̄s̄ (r)

)
= e−ik·r

(
us(r)

vs̄(r)

)
(5)

so that the fast-oscillating part of the wave function is divided out, the BdG equations are
reduced to the Andreev equations [9]:

Eūs(r) = −(ih̄2/m)k · ∇ūs(r) +
ss̄(θ, r)v̄s̄ (r)

Ev̄s̄(r) = (ih̄2/m)k · ∇v̄s̄ (r) +
∗
s̄s (θ, r)ūs(r)

(6)

where the quantities ūs(r) and v̄s̄ (r) are electronlike and holelike quasiparticles with spin
indices s and s̄ respectively.

We consider the ferromagnet/insulator/superconductor junction shown in figure 1. The
geometry of the problem has the following limitations. The particles move in the xy-plane and
the boundary between the ferromagnet (x < 0) and superconductor (x > 0) is the yz-plane at
x = 0. The insulator is modelled by a delta function, located at x = 0, of the form V δ(x).
The temperature is fixed at 0 K. We take both the pair potential and the exchange energy as
step functions, i.e. 
ss̄(θ, r) = "(x)
ss̄(θ), Ur) = "(−x)U . For the geometry shown in
figure 1, equations (6) take the form

Eūs(x) = −(ih̄2/m)kFx
d

dx
ūs(x) +
ss̄(θ)v̄s̄ (x)

Ev̄s̄(x) = (ih̄2/m)kFx
d

dx
v̄s̄(x) +
∗

s̄s (θ)ūs(x).

(7)
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Figure 1. The geometry of the ferromagnet/insulator/triplet-superconductor interface. The pairing
state is unitary with zero spin projection. The vertical line along the y-axis represents the insulator.
The arrows illustrate the transmission and reflection processes at the interface. θ is the angle of
the incident electron and the normal, θA is the angle of the reflected hole and the normal, and θs is
the angle of the transmitted quasiparticle and the normal. Note that θ is not equal to θA since the
back-reflection of the Andreev process is suppressed.

When a beam of electrons is incident from the ferromagnet to the insulator, at an angle θ ,
the general solution of equations (7) is the two-component wave function �I = (u↑ [↓], v↓ [↑])

which for x < 0 is written as

�I =
(

1
0

)
eiq↑ [↓]x cos θ + a↑ [↓]

(
0
1

)
eiq↓ [↑]x cos θA + b↑ [↓]

(
1
0

)
e−iq↑ [↓]x cos θ (8)

where a↑ [↓], b↑ [↓] are the amplitudes for Andreev and normal reflections for spin-up (spin-
down) quasiparticles, and

q↑ [↓] =
√

2m

h̄2 (EF ± U)
is the wave vector of quasiparticles in the ferromagnet for up (down) spin. The wave vector of
the electronlike and holelike quasiparticles is approximated by ks = √

(2mEF/h̄2). Since the
translational symmetry holds in the y-axis direction, the momentum parallel to the interface
is conserved, i.e. q↑ sin θ = q↓ sin θA = ks sin θs . Note that θ is different to θA since the
back-reflection of the Andreev reflection is suppressed. Using the matching conditions of the
wave function at x = 0, �I(0) = �II(0) and � ′

II(0)−� ′
I(0) = (2mV/h̄2)�I(0), the Andreev

and normal reflection amplitudes a↑ [↓], b↑ [↓] for the spin-up (spin-down) quasiparticles are
obtained (A is standing for n+n−φ−φ∗

+):

a↑ [↓] = 4n+λ1

(−1 − λ1 − iz↑ [↓])(−1 − λ2 + iz↑ [↓]) + (1 − λ1 − iz↑ [↓])(−1 + λ2 − iz↑ [↓])A
(9)

b↑ [↓] = (−1 − λ2 + iz↑ [↓])(1 − λ1 + iz↑ [↓]) + (−1 + λ2 − iz↑ [↓])(−1 − λ1 + iz↑ [↓])A
(−1 − λ1 − iz↑ [↓])(−1 − λ2 + iz↑ [↓]) + (1 − λ1 − iz↑ [↓])(−1 + λ2 − iz↑ [↓])A

(10)

where

z0 = mV

h̄2ks
z↑ [↓] = 2z0

cos θs
λ1 = cos θ

cos θs

q↑ [↓]

ks
λ2 = cos θA

cos θs

q↓ [↑]

ks
.
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The BCS coherence factors are given by

u2
± = [1 +

√
E2 − |
±(θ)|2/E]/2 (11)

v2
± = [1 −

√
E2 − |
±(θ)|2/E]/2 (12)

and n± = v±/u±. The internal phase arising from the energy gap is given by φ± =
[
±(θ)/|
±(θ)|], where
+(θ) = 
(θ) (
−(θ) = 
(π−θ)) is the pair potential experienced
by the transmitted electronlike (holelike) quasiparticle. 
(θ) = 
↑↓(θ) = 
↓↑(θ), since the
Cooper pairs have zero spin projection, i.e. d ‖ ẑ.

When θ > sin−1(ks/q↑) ≡ θc1 total reflection occurs and the spin and charge current
vanishes. When θc1 > θ > sin−1(q↑/q↓) ≡ θc2, although the transmitted quasiparticles in
the superconductor do propagate, the Andreev-reflected quasiparticles do not propagate. This
process is called virtual Andreev reflection (VAR). In this case the spin and charge current do
not vanish since a finite amplitude of the Andreev reflection still exists [15].

According to the Blonder–Tinkham–Klapwijk (BTK) formula the conductance for the
charge current of the junction, σ̄q↑ [↓](E, θ), for up-spin (down-spin) quasiparticles, is expressed
in terms of the probability amplitudes a↑ [↓], b↑ [↓] as [8, 15]

σ̄q↑ [↓](E, θ) = Re

[
1 +

λ2

λ1
|a↑ [↓]|2 − |b↑ [↓]|2

]
. (13)

The tunnelling conductance, normalized by that in the normal state, is given by

σq(E) = σq↑(E) + σq↓(E) (14)

σq↑ [↓](E) = 1

RN

∫ π/2

−π/2
dθ cos θ σ̄q↑ [↓](E, θ)P↑ [↓]q↑ [↓] (15)

where

RN =
∫ π/2

−π/2
dθ cos θ [σN↑(θ)P↑q↑ + σN↓(θ)P↓q↓] (16)

σN↑ [↓](θ) = 4λ1

(1 + λ1)2 + z2
↑ [↓]

(17)

where P↑ [↓] = (EF ± U)/2EF is the polarization for up (down) spin. In the z0 = 0 limit the
interface is regarded as a weak link, showing metallic behaviour, while for large z0-values, the
interface becomes insulating.

3. Possible spin-triplet pairing states

For the spin-triplet pairing state the Cooper pairs have one spin degree of freedom. The gap
function is a 2 × 2 symmetric matrix which in the spin space can be written as


̂(k) = iσy(d(k) · σ̂) (18)

where σ̂ denotes the Pauli matrices and d(k) is a vectorial function which is odd in k. The d-
vector defines the axis along which the Cooper pairs have zero spin projection. In the following
we will take d ‖ ẑ. In that case 
↑↑ = 
↓↓ = 0, while 
↑↓ = 
↓↑ = 
(θ). The energy
spectrum of the quasiparticles consists of two branches which are identical for unitary pairing
states—i.e. 
̂†(k)
̂(k) is proportional to the unit matrix—and distinct for non-unitary states.
The non-unitary states have been ruled out for Sr2RuO4 by the very small residual value of the
specific heat at zero temperature [7]. In this paper we will examine only the case of unitary
pairing states. As an example we consider the state


̂(θ) = 
0

(

↑↑(θ) 
↑↓(θ)

↓↑(θ) 
↓↓(θ)

)
. (19)
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(a) For the isotropic p-wave pairing state, 
↑↓(θ) = 
↓↑(θ) = 
0 exp(i(θ − β)) and

↑↑(θ) = 
↓↓(θ) = 0; β denotes the angle between the normal to the interface and
the x-axis of the crystal. This is an opposite-spin pairing state, with a gap of constant
modulus for both spin parts on the Fermi surface. In the following we will consider the
cases where the matrix element 
↑↓(θ) (expressed as 
(θ)) of equation (19) has the
following θ -dependences.

(b) In the case of a p-wave superconductor, proposed by Miyake and Narikiyo [21]


(θ) = 
0

sM
[sin(kxa) + i sin(kya)] (20)

with kxa = Rπ cos(θ − β) and kya = Rπ sin(θ − β), sM = √
2 sin(π/

√
2) = 1.125,

and R = 0.9. This state does not have nodes.

We consider also three pairing symmetries for Sr2RuO4 with line nodes.

(c) In the first 2D f-wave state B1g × Eu,


(θ) = 
0 cos 2(θ − β)[cos(θ − β) + i sin(θ − β)]. (21)

This state has nodes at the same points as in the dx2−y2 -wave case.
(d) For the second 2D f-wave state B2g × Eu,


(θ) = 
0 sin 2(θ − β)[cos(θ − β) + i sin(θ − β)]. (22)

This state has nodes at 0, π/2, π, 3π/2, and has also been studied by Graf and Balatsky
[22].

(e) In case of a nodal p-wave superconductor,


(θ) = 
0

sM
[sin(kxa) + i sin(kya)] (23)

with kxa = π cos(θ−β) and kya = π sin(θ−β). We use here the same normalization as
was proposed by Dahm et al [20]: sM = √

2 sin(π/
√

2) = 1.125, where the Fermi wave
vector is chosen as kF a = π , in order to have a node in 
(θ). This state has nodes as in
the B2g × Eu state. The corresponding nodeless form was initially proposed by Miyake
and Narikiyo [21] and is considered as a separate case.

4. Tunnelling conductance characteristics

In figures 2–6 we plot the tunnelling conductance σq(E) for different values of the exchange
interaction x = U/EF : (a) z0 = 0, β = 0, (b) z0 = 2.5, β = 0, (c) z0 = 2.5, β = π/4. The
pairing symmetry of the superconductor is B1g × Eu in figure 2, B2g × Eu in figure 3, nodal
p wave in figure 4, the p wave proposed by Miyake and Narikiyo [21] in figure 5, and isotropic
p wave in figure 6. When the ferromagnet is a normal metal, i.e. x = 0, the results of [26] are
reproduced. For z0 = 0, the subgap conductance becomes suppressed with the increase of x,
as in the case of a dx2−y2 -wave superconductor [15].

In the case of a normal-metal/insulator/triplet-superconductor junction the peaks inside
the gap are connected to bound states, which are formed due to the sign change that the
transmitted quasiparticles feel, for fixed β at discrete values of θ . The conductance peaks
occur at these energies where an increased number of bound states are formed [26]. For
unitary pairing states the spins of the incident electron and the Andreev-reflected hole are
opposite and, since the spin-up and spin-down quasiparticles have equal wave vectors, no spin
effects are involved in the Andreev reflection. This is not true when the normal metal is replaced
by a ferromagnet. In that case the spin-up and spin-down wave vectors are not equal and the
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Figure 2. The normalized tunnelling conductance σq(E) as a function of E/
0 for x = 0 (solid
line), x = 0.4 (dotted line), x = 0.8 (dashed line), and x = 0.999 (long-dashed line), for different
orientations: (a) Z = 0, β = 0, (b) Z = 2.5, β = 0, (c) Z = 2.5, β = π/4. The pairing symmetry
of the superconductor is B1g × Eu.

spin affects the Andreev reflection. The Andreev-reflected hole decays in the ferromagnet and
the interference with the reflected electron is weak. Moreover the transmitted quasiparticles
experience weakly the sign change of the pair potential, which is the reason for the formation
of the conductance peak. Due to this the conductance peaks are suppressed. This is seen in
figures 2(b) and 2(c), with z0 = 2.5 and β = 0 (π/4), for the B1g × Eu case. Quantitatively
the suppression of the conductance peaks in the ferromagnet/insulator/triplet-superconductor
junction can be seen if we calculate the magnitude of the Andreev-reflected amplitude as a
function of the exchange field when a bound state is formed. Then the amplitude would decay
to zero with the increase of the exchange field. This calculation has been done in the case of a
ferromagnet/insulator/time-reversal-symmetry-broken-superconductor junction where simple
arguments have been derived to connect the suppression of the Andreev reflection as x increases
with the reduction of the conductance peaks [27].
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Figure 3. The same as figure 2, but the pairing symmetry
of the superconductor is B2g × Eu.

Figure 4. The same as figure 2, but the pairing symmetry
of the superconductor is nodal p wave.

Also in the metallic limit (x = 0), for all pairing states we see the presence of a large
residual density of states within the energy gap as a signature of unconventional pairing
symmetry with higher-than-two angular momentum. This is modified by the presence of
the ferromagnet, where the increase of the exchange field suppresses the density of states
within the gap. Also in the metallic limit the conductance increases linearly with E, which is
consistent with the presence of line nodes in the pairing potential. This linear form of the spectra
remains unchanged when increasing x. Generally the evolution of the conductance spectra
with the increase of x, for the three pairing symmetries with line nodes, depends strongly on
the position of the nodes in the pairing potential. In the dx2−y2 -wave case the peak at E = 0
and β = π/4, due to the sign change of the pairing potential for the transmitted quasiparticles,
is substantially reduced with the increase of x [15]. In the case of the (B1g ×Eu)-wave state for
x = 0, the pairing potential is more complicated and the sign change occurs at discrete values
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Figure 5. The same as figure 2, but the pairing symmetry of the superconductor is the p wave
proposed by MN.

of θ , for fixed β. As a result bound states are formed within the gap, and also the position
of the conductance peaks depends on the orientation angle β, as seen in figure 2. Also the
spectrum for angle β in the B1g × Eu case is identical to the spectrum for B2g × Eu in figure 3
for the angle π/4 − β, since the nodes for the two symmetries differ by π/4. The evolution
with x of the conductance spectra for z0 = 0 is different in the B1g × Eu and B2g × Eu cases.
It develops a dip at E = 0 in the B1g × Eu case, while it has a peak in the B2g × Eu case, at
E = 0. The nodal p-wave case in figure 4 has the same nodal structure as the B2g × Eu case
and we see that the spectra for these two candidates are similar.

For nodeless pairing states a subgap or a full gap opens in the tunnelling spectra. This
is seen in figure 5, for the pairing state proposed by Miyake and Narikiyo (MN) [21]. The
spectrum is similar to that for the nodal p-wave case, except that in the MN case a subgap
opens in the tunnelling spectra for a certain junction orientation. In this region, for z0 = 0
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Figure 6. Normalized tunnelling conductance σq(E) as a function of E/
0 for x = 0 (solid line),
x = 0.4 (dotted line), x = 0.8 (dashed line), and x = 0.999 (long-dashed line), for different
orientations: (a) z0 = 0, β = 0, (b) z0 = 2.5, β = 0. The pairing symmetry of the superconductor
is isotropic p wave.

the tunnelling conductance is equal to 2 when x = 0, and has a constant value for x > 0.
The tiny subgap is an indication of the nodeless pairing state. For the isotropic p-wave case
the tunnelling spectrum changes with z0, as can be seen in figure 6, but not with the boundary
orientation β. The spectrum is nodeless, and for z0 = 0, the conductance is σq(E) = 2,
within the energy gap, for x = 0. Similar results have been obtained in reference [17], where
the tunnelling conductance of a ferromagnet/triplet-superconductor interface is calculated, for
both unitary and non-unitary pairing states, having Eu symmetry. Generally in all pairing
states the reduction of the subgap conductance with the exchange field is symmetric since the
density-of-states modulation within the subgap is not induced by spin-dependent effects.

5. Magnetic field effects

In this section we describe the effect of the external magnetic fieldH on the spectra for different
values of the exchange field x. We will see that since the effect of the magnetic field depends
on the spin, the evolution of the tunnelling spectra with x is asymmetric. The tunnelling
conductance is given by

σq(E) = σq↑(E − µBH) + σq↓(E + µBH). (24)

In figures 7(a), 7(b), 7(c) the tunnelling conductance σq(E) is plotted for fixed magnetic field
µBH/
0 = 1 and barrier strength z0 = 2.5, for different values of the exchange interaction x.
The pairing symmetry of the superconductor is B1g ×Eu, B2g ×Eu, nodal p wave, respectively.
The same information is plotted in figures 8(a), 8(b), for the nodeless pairing states: isotropic
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p wave and p wave proposed by Miyake and Narikiyo [21], respectively. The orientation of
the superconductor is chosen as β = 0. In the absence of the exchange interaction (x = 0)
the magnetic field splits the tunnelling spectrum symmetrically. The amplitude of the splitting
depends linearly on the magnetic fieldH . The main effect of the polarization is the imbalance
in the peak heights forE positive and negative. The ratio of the peaks for positive and negative
energy is proportional to the exchange field of the material. ForE < 0 the pattern is suppressed
linearly with the increase of x, while for E > 0 the tunnelling conductance spectrum initially
increases with x and then decreases. Also the conclusions of the previous section for the nodal
and nodeless forms of the tunnelling spectra are still valid in the presence of a magnetic field.
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Figure 7. Normalized tunnelling conductance σq(E) as a
function of E/
0 for x = 0 (solid line), x = 0.2 (dotted
line), x = 0.4 (dashed line), and x = 0.999 (long-dashed
line), for z0 = 2.5, β = 0.0, µBH/
0 = 1, for different
nodal pairing states: (a) B1g ×Eu, (b) B2g ×Eu, (c) nodal
p wave.

Figure 8. Normalized tunnelling conductance σq(E) as a
function of E/
0 for x = 0 (solid line), x = 0.2 (dotted
line), x = 0.4 (dashed line), and x = 0.999 (long-dashed
line), for z0 = 2.5, β = 0.0, µBH/
0 = 1, for different
nodeless pairing states: (a) isotropic p wave, (b) nodeless
p wave proposed by MN.
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6. Conclusions

We have calculated the tunnelling conductance in ferromagnet/insulator/triplet-superconductor
junctions, using the BTK formalism. We assumed pairing potentials with nodes such as the
nodal p-wave state and two 2D f-wave states with line nodes, breaking the time-reversal
symmetry. Also we examined two nodeless pairing states, the p wave proposed by Miyake
and Narikiyo [21] and the isotropic p wave. The linear variation of the conductance with
E is an indication of line nodes and is not influenced much when the exchange interaction
increases. On the other hand, the large residual density of states within the gap is reduced
with the increase of x, and the peaks due to the formation of bound states are removed due to
the suppression of the Andreev reflection. The evolution of the spectra with x depends on the
position of the nodes and the orientation angle β and is different for the three pairing states with
line nodes. In the case of nodeless pairing states, the tunnelling conductance develops a subgap
or a full gap within which σq(E) has a constant value. The exchange interaction suppresses
the conductance within the gap, and can be considered as a measure of the polarization of
the material. The magnetic field splits the tunnelling spectra linearly, and in the half-metallic
ferromagnetic limit x = 1, eliminates the negative branch of the spectrum. These features can
be used to distinguish between the candidate pairing symmetry states of Sr2RuO4.
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